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Introduction

Recent developments in cognitive theory suggest that new

achievement tests must reflect four important aspects of

performance: The first is to assess the principle of performance

on a test that is designed to measure, the second is to measure

dynamic changes in students' strategies, the third is to evaluate

the structure or representation of knowledge and cognitive

skills, and the fourth is to assess the automaticity of

performance skills (Graser, 1985).

These measurement objectives require a new test theory that

is both qualitative and quantitative in nature. Achievement

measures must be both descriptive and interpretable in terms of

the processes that determine performance. Traditional test

theories have shown a long history of contributions to American

-education through supporting norm-referenced and criterion-

referenced testing.

Scaling of test scores has been an important goal in these

types of testing, while individualized information such as

diagnosis of misconceptions has never been a main concern of

testing. In these contexts the information objectives for a test

will depend on the intended use of the test. Standardized test

scores are useful for admission or selection purposes but such

scores cannot provide teachers with useful information for

designing remediation. Formative uses of assessment require new

techniques, and this chapter will try to introduce one of such

techniques.
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Constructed-response formats are desirable for measuring

complex and dynamic cognitive processes (Bennett, Ward, Rock, &

LaHart, 1990) while multiple-choice items are suitable for

measuring static knowledge. Birenbaum and Tatsuoka (1987)

examined the effect of the response format on the diagnosis of

examinees' misconceptions and concluded that multiple-choice

items may not provide appropriate information for identifying

students' misconceptions. The constructed-response format, on

the other hand, appears to be more appropriate. This finding

also confirms the assertion mentioned above by Bennett et al.

(1990).

As for the second objective, several studies on "bug"

stability suggest that bugs tend to change with "environmental

challenges" (Ginzburg, 1977) or "impasses" (Brown & VanLehn,

1980). Sleeman and his associates (1989) developed an

intelligent tutoring system aimed at the diagnosis of bugs and

their remediation in algebra. However, bug instability made

diag7nosis uncertain and hence remediation could not be directed.

Tatsuoka, Birenbaum and Arnold (1990) conducted an experimental

study to test the stability of bugs and also found that

inconsistent rule application was common among students who had

not mastered signed-number arithmetic operations. By contrast,

mastery-level students showed a stable pattern of rule

application. These studies strongly indicate that the unit of

diagnosis should be neither erroneous rules nor bugs but somewhat

larger components such as sources of misconceptions or
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instructionally relevant cognitive components.

The primary weakness of attempts to diagnose bugs is that

bugs are tentative solutions for solving the problems when

students don't have the right skills.

However, the two identical subtests (32 items each) used in

the signed-number study, had almost identical true score curves

for the two parameter-logistic model (Tatsuoka & Tatsuoka, 1991).

This means that bugs are unstable but total scores are very

stable. Therefore, searching for the stable components that are

cognitively relevant is an important goal for diagnosis and

remediation.

The third objective, evaluating the structure or

representation of cognitive skills, requires response formats

different from traditional item types. We need items that ask

P-A-i --- - flow chartc in which complex relations among

tasks, subtasks, skills and solution path are expressed

graphically, or that ask examinees to describe such relations

verbally. Questions can be fi-ural respnne: n t in which

examinees are asked to order the causal relationships among

several concepts and connect them by a directed graph.

These demanding measurement objectives apparently require a

new psychometric theory that can accommodate more complicated

forms of scoring than just right or wrong item-level responses.

The correct response to the item is determined by whether or not

all the cognitive tasks involved in the item can be answered

correctly. Therefore, the hypothesis in this regard would be



that if any of the tasks would be wrong, then there would be a

high probability that the final answer would also be wrong.

These item-level responses are called macro-level responses

and those of the task-level are called micro-level responses.

This report will address such issues as follows:

The first section will discuss macro-level analyses versus

micro-level analyses and will focus on the skills and knowledge

that each task requires.

The second section will introduce elementary graph theory as

a tool to organize various micro-level tasks and their directed

relations.

Third, a theory for designing constructed-response items

will be discussed and will be illustrated with real examples.

Further, the connection of this deter-ministic approach to the

probabilistic models, Item Response Theory and Rule space models

(Tatsuoka, 1983, 1990) will also be explained. These models will

be demonstrated as a computation device for drawing inferences

about micro-level performances from the item-level responses.

Finally, possible scoring rubrics suitable for graded,

continuous and nominal response models will be addressed.

Macro- And Micro-Level Analyses

Making Inferences On Unobservable Micro-Level Tasks From

Observable Item-Level Scores

Statistical test theories deal mostly with test scores and

item scores. In this study, these scores are considered to be

macro-level intormation while the underlying cognitive processes



are viewed as micro-level information. Here we shall be using a

much finer level of observable performances than the item level

or the macro-level.

Looking into underlying cognitive processes and speculating

about examinees' solution strategies, which are unobservable, may

be analogous to the situation that modern physics has come

through in the history of its development. Exploring the

properties and relations among micro-level objects such as atoms,

electrons, neutrons and other elementary particles, has led to

many phenomenal successes in theorizing about physical phenorena

at the macro-level such as the relation between the loss and gain

of heat and temperature. Easley and Tatsuoka (1968) state in

their book Scientific Thought that "the heat lost or gained by a

sample of any non-atomic substance not undergoing a change of

state is jointly proportional to the number of atoms in the

sample and to the temperature change. This strongly suggests

that both heat and temperature are intimately related to some

property of atoms." Heat and temperature relate to molecular

motion and the relation can be expressed by mathematical

equations involving molecular velocities.

This finding suggests that, analogously, it might be useful

to explore the properties and relations among micro-level and

invisible tasks, and to predict their outcomes. These are

observable as responses to test items. The approach mentioned

above is not new in scientific research. In this instance, our

aim is to explore a method that can, scientitically, explain



macro-level phenomena -- in our context item-level or test-level

achievement -- derived from micro-level tasks. The met hor ho

be generalizable from specific relations in a specific dom n to

general relations in general domains. in order to acccmplish our

goal, elementary graph theory is used.

Identification of Prime Subtasks or Attributes

The development of an intelligent tutoring system or

cognitive error diacnostic system, involves a painstaking and

detailed task analysis in which goals, subgoals and various

solution paths are identified in a procedural network (or a flow

chart). This process of uncovering all possible combinations of

subtasks at the micro-level is essential for making a tutoring

system perform the role of the master teachers, although the

current state of research in expert systems only partially

achieves this goal. According to Chipmar, Davis and Shafto

(1986) , many studies have shown the tremendous effectiveness of

individual tutoring by master teachers.

It is very important that analysis of students' performances

on a test be similar to various levels of analyses done by human

teachers while individual tutoring is given. Although the

context of this discussion is task analysis, the methodology to

be introduced can be applied in more general contexts such as

skill analysis, job analysis or content analysis.

Identifying subcomponents of tasks in a given problem-

solving domain and abstracting their attributes is still an art.

It is also necessary that the process be made automatic and
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objective. However, we here assume that the tasks are already

divided into components (subtasks) and that any task in the

domain can be expressed by a combination of cognitively relevant

prime slibcomponents. Let us denote these by Al,...,Ak

and call them a set of attributes.

Insert Figure 1 about here

Determination of Direct Relations Between Attributes

Graph theory is a branch of mathematics that has been widely

used in connection with tree diagrams consisting of nodes and

arcs. In practical applications of graph theory, nodes represent

objects of substantive interest and arcs show the existence of

some relationship between two objects. In the task-analysis

setting, the objects correspond to attributes. Definition of a

direct relation is determined by the researcher using graph

theory, on the basis of the purpose of his/her study.

For instance, Ak - AL if Ak is an immediate prerequisite of

AL (Sato, 1990), or Ak - AL if Ak is easier than A, (Wise,1981).

These direct relations are rather logical but there are also

studies using sampling statistics such as proximity of two

objects (Hubert, 1974) or dominance relations (Takeya, 1981).

(See M. Tatsuoka (1986) for a review of various applications of

graph theory in educational and behavioral research.)

The direct relations defined above can be represented by a

matrix called the adjacency matrix A = (akl) where
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I akl = 1 if a direct relation exists from Ak to A,

[ akt = 0 otherwise

If a direct relation exists from Ak to AL and also from A, to A.,

then Ak and A, are said to be equivalent. In this case, the

elements ak! and aLk of the adjacency matrix are both one.

There are many ways to define a direct relationship between

two attributes, but we will use a "prerequisite" relation in this

paper. One of the open-ended questions shown in Bennett et al.

(1990) will be used as an example to illustrate various new

terminologies and concepts in this study.

Item 1: How many minutes will it take to fill a 2,000-
cubic-centimeter tank if water flows in at the
rate of 20 cubic-centimeters per minute and is
pumped out at the rate of 4 cubic-centimeter per
minute?

This problem is a two-goal problem and the main canonical

solution is that:

1. Net filling rate = 20 cc per minute - 4 cc per minut-
2. Net filling rate = 16 cc per minute
3. Time to fill tank = 2000 cc/16 cc per minute
4. Time to fill tank = 125 minute.

Let us define attributes involved in this problem:

Al : First goal is to find the net filling rate
A2 : Compute the rate
A3 : Second goal is to find the time to fill the tank
A4 : Compute the time.

In this example, Al is a prerequisite of A2 , A2 is a prerequisite

of A3, and A3 is a prerequisite of A4 . This relation can be

written by a chain, Al -> A 2 -> A3 -> A4. This chain can be

expressed by an adjacency matrix whose cells are
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a 12 = a23 = a34 = 1, and others are zeros.

Al A2  A3 A4

0 1 0 01 A,
0 0 1 01 A 2

Adjancency matrix A = 0 0 0 i A3
0 0 0 0J A4

This adjacency matrix A is obtained from the relationships

among the attributes which are required for solving item 1. The

prerequisite relations expressed in the adjacency matrix A in

this example may change if we add new items. For instance, if a

new item -- that requires only the attributes A3 and A4 to reach

the solution -- is added to the item pool consisting of only item

1, then Al may not be considered as the prerequisite of A3 any

more. The prerequisite relation, in practice, must be determined

by a task analysis of a domain and usually it is independent of

items that are in an item pool.

Reachability Matrix: Representation of All the Relations, Both

Direct and Indirect Warfield (1973a,b) developed a method called

"interactive structural modeling" in the context of switching

theory.

By his method, the adjacency matrix shown above indicates

that there are direct relations from Al to A2, from A2 to A3 and

from A3 to A4 but no direct relations other than among these

three arcs. However, a directed graph (or digraph) consisting of

Al, A2, A3, and A4 shows that there is an indirect relation from

A1 to A3, from A2 to A4, and Al to A4.
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Warfield showed that we can get a reachability matrix by

multiplying the matrix A + I -- the sum of the adjacency matrix A

and the identity matrix I -- by itself n times in terms of

Boolean Algebra operations. The reachability matrix indicates

that reachability is at most n steps (Ak to A,), whereas the

adjacency matrix contains reachability in exactly one step (Ak to

A,) [a node is reachable from itself in zero steps]. The

reachability matrix of the example in the previous section is

given below:

R = (A + I)3 = (A + I)4 = (A + I)' =

Al A2 A3  A4

1 1 1 1 Al
R = 0 1 1 1 A 2

0 0 1 1 A3

0 0 0 1J A4

where the definition of Boolean operations is as follows:

1 + 1 = 1, 1 + 0 = 0 + 1 =1, 0 + 0 =0 for addition and

1 x 1 = 1, 0 x 1 = 1 x 0 = 0, 0 x 0 0 for multiplication.

The reachability matrix indicates that all attributes are

related directly or indirectly. From the chain above, it is

obvious that although Ak and Ak+ relate directly Ak and Ak+2

relate indirectly.

This form of digraph representation of attributes can be

applied to either evaluation of instructional sequences,

curriculum evaluation, and documentation analysis and has proved

to be very useful (Sato, 1990). Moreover, reachability matrix

can provide us with information about cognitive structures of
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attributes. However, application to assessment analysis requires

extension of the original method introduced by Warfield.

A Theory of Item DesiQn Appropriate For

The Constructed-Response Format

An Incidence Matrix Ir "ssessment Analysis

The adjacency matrix (akt) is a square matrix of order

K x K, where K is the number of attributes and akl represents the

existence or absence of a direct directed relation from Ak to A,.

Let us consider a special case.

When the adjacency matrix A is a null matrix, hence A + I is

the identity matrix of the order k -- there is no direct relation

among the attributes. Let 0 be a set {Al, A2,...,Ak) and L be

the set of all subsets of 0,

L = [{A }, {A 2 }, ... , (A, ,A2), {AlA 3 } ,... (A ,A 2  . . . ,Ak},{

then L is called a lattice in which the number of elements in L

is 2k.

In this case, we should be able to construct an item pool of

2k items in such a manner that each item involves only one

element of L. There is a row for each attribute and a column for

each item, and the element of 1 in (k,j)-cell indicates that item

j involves attribute Ak while 0 indicates that item j does not

involve Ak. Then this matrix of order K x 2 k -- or K x n for

short -- is called an incidence matrix, Q = (qkj), k=l,...K &

j=l,...n.

For example, in the matrix Q below, k + 1 th column (item
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k + 1) has the vector of (1 1 0 ... 0) which corresponds to the

k + 1 th set, {Al, A2 ) in L.

il i2 . ik i(k+l) i(k+2) . . . i( 2 k-l) i(2k)

1 0 . 0 1 1 . ...... 1 0 Al
Q(kxn) 0 1 . 0 1 0 . ...... 1 0 A2

0 0 . .0 0 1 . ...... 1 0 A3

0 0 . 1 0 1. ....... 1 0 Ak

However, if K becomes large, say K=20, then the number of

items in the item pool becomes astronomically large,

220=1,048,576. In practice, it might be very difficult to

develop a pool of constructed response items so that each item

requires only one independent attribute. Constructed response

items are usually designed to measure such functions as cognitive

processes, organization of knowledge and cognitive skills, and

theory changes required in solving a problem. These complex

mental activities require an understanding of all the

relationships which exist in the elements of 0. Some attributes

are connected by a direct relation while others are isolated.

In general, the manner in which the attributes in 0

interrelate, one with another, bear a closer resemblanice to the

arc/node tree configuration than they do to the unidimensional

chain shown in the previous section.

Suppose we modify the original water-filling-a-tank problem

to make four new items (beyond our original item 1 - page 8),

which include the original attributes.
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Item 2 What is the net filling rate of water if water
flows in at the rate of 50 cc/min and out at the
rate of 35 cc/min ?

Item 3 What is the net filling rate of water if water
flows in at the rate of h cc/min and out at the
rate of d cc/min?

Item 4 How many minutes will it take to fill a 1,000-
cubic-centimeters tank if water flows in at the
rate of 50 cubic-centimeters per minutes?

Item 5 How many minutes will it take to fill an x cubic-
centimeters water tank if water flows in at the
rate of y cubic-centimeters per minutes?

The incidence matrix Q for the five items will be:

il i2 i3 i4 i5

1 1 0 0 Al
1 0 0 0 A2

Q(4x5)= 1 0 0 1 1 A 3

1 0 0 1 01 A4

The prerequisite relations among the four attributes are

changed from the "totally ordered" chain, Al -> A2 -> A3 -> A4

to the partially ordered relation as stated below. That is, A,

is a prerequisite of A2, A3 is a prerequisite of A4, but A2 is

not a prerequisite of either A3 or A4. The relationship among

the attributes is no longer a totally-ordered chain but two

totally-ordered chains, A -> A2 and A3 -> A4.

Tatsuoka (1991) introduced the inclusion order among the row

vectors of an incidence matrix and showed that a set of the row

vectors becomes Boolean Algebra with respect to Boolean addition

and multiplication. In this Boolean algebra, the prerequisite

relation of two attributes becomes equivalent to the inclusion

order between two row vectors -- that is, the row vectors A and
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A3 include the row vectors A2 and A4, respectively, in the

Q(4 x 5) matrix above.

There is an interesting relationship between an incidence

matrix Q(k x n) and the reachability matrix R(k x k). A pairwise

comparison over all the combinations of the row vectors of

Q(k x n) matrix with respect to the inclusion order will yie=1

the reachability matrix R(k x k) in which all the relations

logically existing among the k attributes, both direct or

indirect, are expressed. This property is very useful for

examining the quality and cognitive strucL~res oi an item

pool.

The adjacency and reachability matrices of the GRE items

given earlier are given below:

f o 10 0 1100

A(4x4) = 0 0 1 R(4x4) = 0 11
10 000 0 01

However, the reachability matrix of the case given in Q(kxn)

in which k attributes have no relations will be the identity

matrix of the order k. This result can be easily confirmed by

examining the inclusion relation of all pairs of the row vectors

of the matrix Q(k x n).

Connection of our Deterministic Approach to Probability Theories

Tatsuoka and Tatsuoka (1987) introduced the slippage random

variable S, wliich is assumed to be independe1iL dcross the items,

as follows:
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If Si = 1, then X, = 1 - Ri  and if S. = 0, then Xi = R-.

or, equivalently, Sj = l Xj- Rj I .

A set (Xm} forms a cluster around R -- (where X. is an item

response pattern that is generated by adding different numbers of

slips to the ideal item pattern R). The Tatsuokas showed that

the total number of slippage s in these 'Lazzy" item patterns

follows a compound binomial distribution with the slippage

probabilities unique to each item. They called this distribution

the "bug distribution."

However, it is also the conditional distribution of s given

R, where R is a state of knowledge and capabilities. This is

called a state distribution for short. Once a distribution is

determined for each state of knowledge and capabilities, then

Bayes' decision rule for minimum errors can be applied to

classify any student's response patterns into one of these

predetermined states of knowledge and capabilities (Tatsuoka &

Tatsuoka, 1987).

The notion of classification has an important implication

for education. Given a response pattern, we want to determine

the state to which the students' misconception is the closest and

we want to answer the question: "What misconception, leading to

what incorrect rule of operation, did this subject most likely

have?" or "What is the probability that the subject's observed

responses have been drawn from each of the predetermined states?"

This is error dianoiusis.

For Bayes' decision rule for minimum errors, the
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classification boundary of two groups of "fuzzy" response

patterns becomes the linear discriminant function when the state

distributions are a multivariate normal and their covariance

matrices are approximately equal. Kim (1990) examined the effect

of violation of the normality requirement, and found that the

linear discriminant function is robust against this violation.

Kim further compared the classification results using the linear

discriminant functions and K nearest neighbors method, which is a

non-parametric approach, and found that the linear discriminant

functions are better. However, the classification in the n-

dimensional space with many predetermined groups (as many as 50

or 100 states) is not practical.

Tatsuoka (1983, 1985, 1990) proposed a model (called 'rule

space') that is capable of diagnosing cognitive errors. Rule

space uses item response functions where the probability of

correct response to item j is modeled as a function of the

student's "proficiency", (which is denoted by 0) as P1 (0), and

that Qj(6)=l-Pj(O). Since the rule space model maps all possible

item response patterns into ordered pairs of (e,C) and where C is

an index measuring atypicality of response patterns (a projection

operator by a mathematical term), all the error groups will also

be mapped into this Cartesian Product space. The mapping is one-

to-one at almost everywhere if IRT functions are monotone

increasing (Tatsuoka, 1985; Dibello & Baillie, 1991).

Figure 3 illustrates the rule space configuration.
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Insert Figure 3 about here

Rule space can be regarded as a technique for reducing the

dimensionality of the classification space. Furthermore, since

the clusters of "fuzzy" response patterns that are mapped into

the two dimensional space follow approximately bivariate normal

distributions (represented by the ellipses shown in Figure 3),

Bayes' decision rules can be applied to classify a point in the

space into which one of the ellipses shown in Figure 3), (M.

Tatsuoka & K Tatsuoka, 1989; Tatsuoka, 1990).

Kim also compared the classification results using rule

space with Bayes' classifiers -- the discriminant function

approach -- and the non-parametric K-nearest neighbors method.

He found that the rule space approach was efficient in terms of

CPU time, and that the classification errors were as small as

those created by the other two methods.

Moreover, states located in the two extreme regions of the 0

scale, tended to have singular within-groups covariance matrices

in the n-dimensional space; hence, classification using

discriminant functions could not be carried out for such cases.

The rule space classification, on the other hand, was always

obtainable and reasonably reliable.

We assumed the states for classification groups were pre-

determined. However, determination of the universal set of

knowledge states is a complicated task and it requires a

mathematical tool, Boolean algebra, to cope with the problem of
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combinatorial explosion (Tatsuoka, 1991).

We utilized a deterministic logical analysis to narrow down

the fuzzy region of classification as much as possible to the

extent that we would not lose the interpretability of

misconceptions and errors. Then the probability notion, used to

explain such uncertainties as instability of human performances

on items, was used to express perturbations.

Correspondence Between the Two Spaces, Attribute Responses and

Item Responses

Tatsuoka (1991), Varadi & Tatsuoka (1989) introduced a

"Boolean descriptive function" f to establish a relationship

between the attribute responses and item responses.

For example, in the matrix Q(4 x 5), a subject who can not

do Al but can do A2, A3, and A4, will have the score of 1 for

those items that do not involve Al and the score of 0 for those

that do involve Al. Thus, the attribute pattern (0 1 1 1)

corresponds to the observable item pattern (0 0 0 1 1).

By making the same kinds of hypothesis on the different

elements of L and applying these hypotheses to the row vectors of

the incidence matrix Q, we can derive the item patterns that are

logically possible for a given Q matrix. These item patterns are

called ideal item patterns (denoted by Ys).

Generally speaking, the relationship between the two spaces,

the attribute and item spaces is not straightforward as the

example of Q(4 x 5). This is because partial order relations

among the attributes almost always exist and a given item pool
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often does not include the universal set of items which involve

all possible combinations of attributes.

A case when there is no relation among the attributes

Suppose there are four attributes in a domain of testing,

and that the universal set of items 24 are constructed, then

incidence matrix of 24 items is given below:

1111111
1234567890123456

0100011100011101 A1
0 1 0 0 1 0 0 110 1 1 0 1 A2

Q(4 x 16) = 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 A3
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 A4

An hypothesis that states "this subject cannot do A, but can

do Al,.. A[ i, AL ,..Ak correctly" corresponds to the attribute

pattern (1 ... 1 0 1... 1). Let us denote this attribute pattern

by Y,, then Y, produces the item pattern X, where xJ = 1 if item

j does not involve A,, and xJ = 0 if item j involves A,. This

operation is defined as a Boolean descriptive function.

Sixteen possible attribute patterns and the images of f (16

ideal item patterns), are summarized in Table 1 below.

Insert tabie i aDout here

For instance, attribute response pattern 1 0 indicates that

a subject cannot do A, and A3 correctly but can do A2 and A4.

Then from the incidence matrix Q(4x16) shown above, we see that

the scores of items 2,4,6,7,8,9 11,12,13,14,16 must become zero

while the scores of 1,3,5,10 must be 1.
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Table 1 indicates that any responses to the 16 items can be

classified into one of the 16 predetermined groups. They are the

universal set of knowledge and capability states that are derived

from the incidence matrix Q(4 x 16) by applying the properties of

Boolean algebra. In other words, the 16 ideal item patterns

exhaust all the possible patterns logically compatible with the

constraints imposed by the incidence matrix Q(4 x 16). By

examining and comparing a subject's responses with these 16 ideal

item patterns, one can infer the subject's performances on the

unobservable attributes. As long as these attributes represent

the true task analysis, any response patterns of the above 16

items, which differ from the 16 ideal item patterns, are regarded

as fuzzy patterns or perturbations resulting from some lapses or

slips on one or more items, reflecting random errors.

A Case When There Are Prerequisite Relations Among the Attribuces

So far we have not assumed any relations among the four

attributes in Table 1. It is often the case that some attributes

are directly related one to another. Suppose Al is a

prerequisite of A2, A2 is a prerequisite of A3 and A, is also a

prerequisite of A4 .

Insert Figure 2 about here

If we assume that a subject cannot do Al correctly, then A2

and A3 cannot be correct because they require knowledge of Al as

a prerequisite. Therefore, the attribute patterns 3, 4, 5, 9,

10, 11, and 15 in Table 1 become (0 0 0 0) which is pattern 1.
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By an argument similar to the above paragraph, "cannot do A2 "

implies "cannot do A3
t . In this case the attribute patterns 2

and 7, and the patterns 8 and 14 are respectively no longer

distinguishable. Table 2 summarizes the implication of the

relations assumed above among the four attribute set.

Insert Table 2 about here

The number of attribute patterns has been reduced from 16 to

7. The item patterns associated with these seven attribute

patterns are given in the right-hand column, in which each

pattern still has 16 elements. It should be noted that we do not

need 16 items to distinguish seven attribute patterns. Items 2,

3, 4, 5, 10, and 11 are sufficient to provide the different ideal

item patterns, (0 0 0 0 0 0), (1 0 0 0 0 0 0), (1 0 0 1 0 0),

(1 1 0 1 1 0), (1 1 0 0 0 0), (1 1 1 0 0 0), (1 1 1 1 1 1), which

are obtained from the second through fifth columns, and the 10th

and 11th columns of the ideal item patterns in Table 2.

The seven reduced attribute paterns given in Table 2 can be

considered as a matrix of the order 7 x 4. The four column

vectors, which associate with attributes, Al, A2, A3 and A4

satisfy the partial order defined by the inclusion relation.

Expressing the inclusion relationships among the four attributes

-- A, (column 1), A2 (column 2), A3 (column 3) and A4 (column

4) -- in a matrix, results in the following reachability matrix

R:
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R= ii1 1 1

0 0 10

It is easy to verify that R can be derived from the

adjacency matrix of A obtained from the prerequisite relations

among the four attributes; Al -> A2 -> A3 and Al -> A4.

An approach to design constructed-response items for a diagnostic

test.

Notwithstanding the above, it is sometimes impossible to

construct items like 2,3,4, and 5 which involve only one

attribute per item. This is especially true when we are dealing

with constructed-response items, we have to measure much more

complicated processes such as organization of knowledge and

cognitive tasks. In these cases, it is natural to assume that

each item will involve several attributes. By examining Table

2, one can find several sets of items for which the seven

attribute patterns produce exactly the same seven ideal item

patterns as those in Table 2.

For example, they are a set, (2,3,4,5,10,11}, or

,2,3,4,5,13,11}. These two sets of items are just examples which

are quickly obtained from Table 2. There are 128 different sets

of items which produce the seven ideal item patterns when the

seven attribute patterns in Table 2 are applied. This means that

there are many possibilities for selecting an appropriate set of

six items so as to maximize diagnostic capability of a test. The

common condition for selection of these sets of items can be
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generalized by the use of Boolean algebra, but detailed

discussion will not be given in this paper.

This simple example implies that this systematic item

construction method enables us to measure unobservable underlying

cognitive processes via observable item response patterns.

However, if the items are constructed without taking these

requirements into account, then instructionally useful feedback

or cognitive error diagnoses may not be always obtainable.

Explanation with GRE math items

The five items associated with GRE water filling problem are

given in the earlier section. The incidence matrix Q(4 x 5)

produces nine ideal item patterns and attribute patterns by using

BUGLIB program (Varadi & Tatsuoka, 1989). Table 3 summarizes

them.

Insert Table 3 about here

The prerequisite relations, Al -> A2 and A3 -> A4 imply some

constraints on attribute patterns: the attribute pattern, (0 1)

for A,, A2 and A3, A4 cannot exist logically. A close

examination of Table 1 reveals that the constraints result in

nine distinguishable attribute patterns. They are: 3,5,10 result

in 1 that is (0000) ; 8 to 2 that is (1000) ; 9 to 4, (0010) ; 13 to

6, (1100); 15 to 11, (0011) and the remaining patterns 7, (1010);

12, (1110); 14, (1011) and 16 (1111). These attribute patterns

are identical to the patterns given in Table 3.

It can be easily verified that the reachability matrix given
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in earlier section (p. 13) is the same as the matrix which is

obtained by examining the inclusion relationships among all

combinations of the four column vectors of the attribute patterns

in Table 3. This means that all possible knowledge states,

obtainable from the four attributes with the structure

represented by R can be used for diagnosing a student's errors.

The five GRE items are good items as far as a researcher's

interest is to measure and diagnose the nine states of knowledge

and capabilities listed in Table 3.

Illustration With Real Examples

Example I: A Case of Discrete Attributes In Fraction Addition
Problems

Birenbaum & Shaw (1985) used Guttman's facet analysis

technique (Guttman, et.al. 1991) to identify eight task-content

facets for solving fraction addition problems. There were six

operation facets that described the numbers used in the problems

and two facets dealing with the results. Then, a task

specification chart was created based on a design which combined

the content facets with the procedural steps. Figure 4 shows the

task specification chart.

Insert Figure 4 about here

The task specification chart describes two strategies to

solve the problems, methods A and B. Those examinees who use

Method A convert a mixed number (a b/c) into a simple fraction,

(ac+b)/c, similarly, the users of method B separate the whole

number part from the fraction part and then add the two parts
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independently. In these cases, it is clear that when the numbers

become larger in a fraction addition problem, then Method A

obviously requires computational skills to get the correct

answer. Method B, on the other hand, requires a deeper

understanding of the number system.

Sets of attributes for the two methods are selected from the

task specification chart in Figure 4 as follows:

Problem: a b/c + d e/f Method A Method B

Al Convert (a b/c) to (ac+b)/c used Not used

A2 convert (d e/f) to (df+e)/f used Not used

A3 Divide fraction by a common factor used used

A4 Find the common denominator of c & f used used

A5 Make equivalent fractions used used

A6 Add numerators used used

A7 Divide numerator by denominator used used

A8 Don't forget the whole number part used used

BI Separate a & d and b/c & e/f Not used used

B2 Add the whole numbers including 0 Not used used

The two methods share all of the attributes in common,

except for BI and B2 , A, and A2. The incidence matrices for the

ten items in Birenbaum and Shaw (1985), for Methods A and B, are

given in Table 4.

Insert Table 4 about here

A computer program written by Varadi and Tatsuoka (BUGLIB,

1990) produces a list of all the possible "can/cannot"

combinations of attributes, otherwise known as the universal set

of attribute response patterns.
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For Method A, 13 attribute patterns are obtained. The

attribute patterns and their corresponding ideal item patterns

are given in Table 5 where the attributes are denoted by the

numbers 1 through 8 for Al through A., and 9 and 10 for BI and

B2, respectively. For instance, the second state, 2, has the

attribute pattern 11111110 and the ideal item pattern is

represented by 111100010.

Insert Table 5 about here

It is interesting to note that there is no state including

"cannot do an item that involves both of the attributes, Al and

A2, but can do items that involve either A, or A2 alone" in the

list given in Table 5. If one would like to diagnose such a

compound state, then a new attribute should be added to the list.

Another interesting result is that A5 cannot be separated

from A4 as long as we use only these ten items. In other words,

the rows for A4 and A5 in the incidence matrix for Method A are

identical. Needless to say, Shaw and Tatsuoka (1983) found many

different errors that originated in attribute A5, -- making

equivalent fractions -- and they must be diagnosed for

remediation (Bunderson & Ohlsen, 1983). In order to separate A5

from A4, we must add a new item which involves A4 but not A5 ,

thereby making Row A5 different from Row A4.

Beyond asking the original "equivalent fraction" question,

we now add an item to the existing item pool, which asks, "What

is the common denominator of 2/5 and 1/7?" This is a w/y to test



27

the skill for getting common denominators correctly and also

distinguishes the separate skill required for making equivalent

fractions. However, since the solutions to each of these

questions a are so closely related and inter-dependent, it may

not be possible to separate measure the examinees' skills in

terms of each function.

If an examinee answers this item correctly but gets a wrong

answer for items involving addition, such as 2/5 + 1/7, then it

is more likely that the examinee has the skill for getting

correct common denominators but not the skill for making

equivalent fractions correctly.

Thirteen knowledge and capability states are identified from

the incidence matrix for Method B, and they are also summarized

in Table 5. Some ideal item response patterns can be found in

the lists for both Methods A and B. This means that for some

cases we cannot diagnose a student's underlying strategy for

solving these ten items. Our attribute list cannot distinguish

whether a student converts a mixed number (a b/c) to an improper

fraction, or separates the whole number part from the fraction

part. If we can see the student's scratch paper and can examine

the numerators prior to addition, then we can find which method

the student used. There are two solutions to this problem. One

is to use a computer for testing so that crucial steps during

problem solving activities can be coded. The second is to add

new items sc that these three attributes, Al, A2 and Bi can be

separated in the incidence matrix for Method B.
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Example 2: The Case of Continuous and Hierarchically Related
Attributes in The Adult Literacy Domain

Kirsch and Mosenthal (1990) have developed a cognitive model

which underlies the performance of young adults on the so-called

document literacy tasks. They identified three categories of

variables which predict the difficulties of items with a multiple

R of .94.

Three categories of variables are defined:

"* Document" variables (based on the structure and

complexity of the document)

. "Task" variables (based on the structural relation between

the document and the accompanying question or directive)

" "Process" variables (based on strategies used to relate

information in the question or directive to information in

the documents" (Kirsch and Mosenthal, 1990, p.5).

The "Document" variables comprise six specific variables

including the number of organizing categories in the document,

the number of embedded organizing categories in the document and

the number of specifics. These three variables are considered in

our incidence matrix as the attributes for "Document" variables.

The "Task" variables are determined on the basis of the

structural relations between a question and the document that it

refers to. The larger the number of units of information

required to complete a task, the more difficult the task. Four

attributes are picked up from this variable group.

The "Process" variables developed through Kirsch and

Mosenthal's regression analysis showed that variables in the
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category of "Process" variables influenced the item difficulties

to a large extent. One of the variables in this category is the

degree of correspondence, which is defined as the degree to which

the information given in the question or directive matches the

corresponding information in the document.

The next variable represents the type of information which

has to be developed to locate, identify, generate, or provide the

requested information based on one or more nodes from a document

hiererchy. Five hierarchically related attributes are determined

from this variable group.

The last variables are Plausibility of Distractors, which

measure the ability to identify the extent to which information

in the document matches features in a question's given and

requested information.

A total of 22 attributes are selected to characterize the 61

items. Since the attributes in each variable group are totally

ordered, i.e., Al -> A2 -> A3 -> A4 -> A5, the number of possible

combinations of "can/cannot" attributes is drastically reduced

(Tatsuoka, 1991). One-hundred fifty-seven possible attribute

response patterns were derived by the BUGLIB program and hence

157 ideal item response patterns are produced. As was explained

in the earlier section, these 157 ideal item response patterns

correspond to the 157 state distributions that are multivariate

normal. These states are used for classifying an individual

examinee's response pattern. A sample of ten states with their

corresponding attribute response patterns are shown in
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Table 6 as examples.

Insert Table 6 about here

As can be seen in Table 6, several subsets of attributes are

totally ordered and the elements of the subset form a chain.

Further 1500 subjects were classified into one of the 157

misconception states by a computer program entitled RULESPACE

(Tatsuoka, Baillie, Sheehan, 1991). The number of subjects who

were classified into one of these ten states are -- 157 subjects

in State No.1, 46 in No. 4, 120 in No. 11, 81 in No. 12, 37 in

No. 14, 68 in No. 50, 12 in No. 32, 27 in No. 102, 11 in No. 138

and 4 in No. 156.

While the interpretation of misconceptions for these results

is described in detail elsewhere (Sheehan, Tatsuoka & Lewis,

1991), State No. 11 (into which the largest number of subjects

were classified) will be described here.

"Cannot attributes A18 and A19" relate directly from A18 to

A19. Therefore, as represented in Table 6, the statement can be

made that, "a subject classified in this state cannot do A18 , and

hence cannot, by default, do A 19 ." Thus, the prescription for

these subjects' errors is likely to be that they make mistakes

when items have the following specific feature:

.... Distractors appear both within an organizing category

and across orgarizing categories, because different

organizing categories list the zar- specifics but with

different attributes" (Kirsch and Mosenthal, 1990, p. 30).
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Psychometric Theories Appropriate For

A Constructed Response Format

An incidence matrix suggests various scoring formulas for

the items.

First, the binary scores of right or wrong answers can be

obtained from the condition that - if a subject can perform all

the attributes involved in an item correctly, then the subject

will get a score of one on that item; otherwise the subject will

get a score of zero. With this scoring formula, the simple

logistic models (Lord & Novick, 1968) for binary responses can be

uzed for estimating the scaling variable 0.

Second, partial credit scores or graded response scores can

be obtained from the incidence matrix if performance dependent on

the attributes is observable and can be measured directly. This

condition permits applicability of Masters' partial credit models

(Masters, 1982) or Samejima's General Graded response models

(Samejima, 1988) to data.

As far as error diagnoses are concerned, simple binary

response models always work even when performances on the

attributes cannot be measured directly and are not observable.

However, computer scoring (Bennett, Rock, Braun, Frye, Spohrer,

and Soloway, 1990), or scoring by human raters or teachers can

assign graded scores to the items. For example, the number of

correctly processed attributes for each item could be a graded

score.

Muraki (1991) wrote a computer program for his modified
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version of Samejima's original graded response model (Samejima,

1969). Muraki's program can be used for Samejima's model itself

also.

Third, a teacher may assign different weights to the

attributes and give a student a score corresponding to the

percentage of correct answers achieved, depending on how well the

student performed on the attributes. Thus, the final score for

the item becomes a continuous variable. Then Samejima's (1976,

1988) General Continuous IRT model can be used to estimate the

ability parameter 0. If the response time for each item is

available, then her Multidimensional Continuous model can be

applied to such data sets.

Fourth, if a teacher is interested in particular

combinations of attributes and assigns scores to nominal

categories, say 1 = {can do Al and A3), 2 = {can do A, and A2)

and 3 = (can do A2, A3 and A4},.. so on, then Bock's (1972)

Polychotomous model can be utilized for getting 8.

Discussion

A wide variety of Item Response Theory models accommodating

binary scores, graded, polychotomous, and continuous responses

have been developed in the past two decades. These models are

built upon a hypothetical ability variable 8. We are not against

the use of global item scores and total scores -- e.g., the total

score is a sufficient statistic for 0 in the Rasch Model -- but

it is necessary to investigate micro-level variables such as

cognitive skills and knowledge and their structural relationships
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in order to develop a pool of "good" constructed- response items.

The systematic item construction method enables us to measure

unobservable underlying cognitive processes via observable item

response patterns.

This study introduces an approach for organizing a couple of

dozen such micro-level variables and for investigating their

systematic interrelationships. The approach utilizes

deterministic theories, graph theory and Boolean algebra. When

most micro-level variables are not easy to measure directly, an

inference must be made from the observable macro-level measures.

An incidence matrix for characterizing the underlying

relationships among micro-level variables is the first step

toward achieving our goal. Then a Boolean algebra that is

formulated on a set of sets of attributes, or a set of all

possible item response patterns obtainable from the incidence

matrix, enables us to establish relationships between two worlds:

attribute space and item space (Tatsuoka, 1991).

A theory of item construction is introduced in this paper

in conjunction with Tatsuoka's Boolean algebra work (1991). If a

subset of attributes has a connected, directed relation and forms

a chain, then the number of combinations of "can/cannot"

attributes will be reduced dramatically. Thus, it will become

easier for us to construct a pool of items by which a particular

group of misconceptions of concern can be diagnosed with a

minimum classification errors.

One of the advantages of rule space model (Tatsuoka, 1983,
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1990) is that the model relates a scaled ability parameter e to

misconception states. For a given misconception state, which is

error, one can always identify the particular types of errors

which relate to ability level 0. If the centroid of the state is

located in the upper part of the rule space, then one can

conclude that this type of error is rare. If the centroid lies

on the 8 axis, then this error type is observed very frequently.

Although Rule space was developed in the context of binary

IRT models, the concept and mathematics are general enough to be

extended for use in more complicated IRT models. Further work to

extend the rule space concept to accommodate complicated response

models will be left for future research.
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Table 1 A List of 16 Ideal Item Response Patterns Obtained from
16 Attribute Response Patterns by a Boolean Description
Function

Attribute response patterns Ideal item response patterns

1 0000 1000000000000000

2 1000 1100000000000000

3 0100 1010000000000000

4 0010 1001000000000000

5 0001 1000100000000000

6 1100 1110010000000000

7 1010 1101001000000000

8 1001 1100100100000000

9 0110 1011000010000000

10 0101 1010100001000000

11 0011 1001100000100000

12 1110 1111011010010000

13 1101 1110110101001000

14 1011 1101101100100100

15 0111 1011100011100010

16 1111 111111111111l



Table 2 A List of Attribute Response Patterns and Ideal Item
Res-cnse ter Affecteu' by Direct Relations QL
Attributes

Original Patterns Attribute Ideal Item Patterns
Patterns

1,3,4,5,9,10,11,15 0000 1000000000000000

2, 7 1000 1100000000000000

8,14 1001 1100100100000000

13 1101 1110110101001000

6 1100 1110010000000000

12 1110 1111011010010000



Table 3 A List of Nine Knowledge and Capability States and Nine

Tleal Item Patterns of GRE-math -ters

Attribute Patterns Ideal Item Patterns Description of States

1 1 1 1 1 1 1 1 1 1 Can do everything

2 1 1 1 0 0 1 1 0 1 Can do AI*, A2, A3
Cannot do A4

3 1 1 00 0 1 1 0 0 Can do A,, A2
Cannot do A3, A4

4 1 0 1 1 0 0 1 1 1 Can do A1 , A3, A4
Cannot do A2

5 1 0 1 0 0 0 1 0 1 Can do A,, A3
Cannot do A2, A4

6 1 0 0 0 0 0 1 0 0 Can do Al
Cannot do A2 , A3 , A4

7 0 0 1 1 0 0 0 1 1 Can do A3, A4
Cannot do A,, A2

8 0 0 1 0 0 0 0 0 1 Can do A3
Cannot do Al, A2 , A4

9 0 0 0 0 0 0 0 0 0 Cannot do anything

* A : Goal is to find the net filling rate

A2 : Compute the rate

A3 : Goal is to find the time to fill the tank

A4 : Compute the time.



Table 4 Ten Items with Their Attribute Characteristics

by Metho6 A and Method B

Method A

1 2 8/6 + 3 10/6 Al, A2, A3, A6 , A7

2 3/5 + 1/5 A6

3 3 10/4 + 4 6/4 Al, A2, A3, A6 , A7

4 7/4 + 5/4 A6, A7

5 3/4 + 1/2 A4, A5 , A6, A7, A8

6 2/5 + 12/8 A3, A4, A5, A6 , A7, A8

7 1/2 + 1 10/7 A2, A4 , A5, A6 , A7 , A8

8 1/3 + 1/2 A4, A5, A6

9 3 1/6 + 2 3/4 A1, A2, A4, A5 , A6 , A7 , A8

10 5/6 + 1/3 A4, A5, A6, A7 , A8

Method B

1 2 8/6 + 3 10/6 B1, A3 , A4, A5, A6 , A7, B2

2 3/5 + 1/5 same as by Method A

3 3 10/4 + 4 6/4 B1, A3 , A6, A7 , A8 , B2

4 7/4 + 5/4 same as by Method A

5 3/4 + 1/2 same as by Method A

6 2/5 + 12/8 same as by Method A

7 1/2 + 1 10/7 BI A4, A5, A6 , A7, A8, B2

8 1/3 + 1/2 same as by Method A

9 3 1/6 + 2 3/4 B1, A4, A5 , A6, B2

10 5/6 + 1/3 same as by Method A



Table 5 A list of all the possible sets of attribute patterns
derived from the incidence matrices given in TablP

Method A

States Cannot Can Ideal Item Response Pattern

1 none 1,2,3,4,5,6,7,8 1111111111

2 8 1,2,3,4,5,6,7 1111000100

3 4,5,8 1,2,3,6,7 1111000000

4 1 2,3 4,5,6,7,8 0101111101

5 2,1 3,4,5,6,7,8 01011101Ci

6 3 1,2,4,5,6,7,8 0101101111

7 3,1 2,4,5,6,7,8 0101101101

8 3,2,1 4,5,6,7,8 0101100101

9 1,2,3,8 4,5,6,7 0101000100

10 1,2,3,4,5,8 6,7 0101000000

11 7,1,2,3,8 4,5,6 0100000100

12 1,2,3,8,7,4,5 6 0100000000

13 1,2,3,4,5,6,7,8 none 0000000000

Method B

States Cannot Can

1 none 3,4,5,6,7,8,9,10 1111111111

2 8 3,4,5,6,7,9,10 1101000110

3 4,5 3,6,7,8,9,10 0111000000

4 9,10 3,4,5,6,7,8 0101110101

5 3 4,5,6,7,8,9,10 0101101111

6 3,9,10 4,5,6,7,8 0101100101

7 3,8 4,5,6,7,9,10 0101000110

8 3,8,9,10 4,5,6,7 0101000100

9 3,4,5,8,9,10 6,7 0101000000

10 7,3 8 4,5,6,9,10 0100000110

11 3,7,8,9,10 4,5,6 0100000100

12 3,4,5,7,8,9,10 6 0100000000

13 3,4,5,6,7,8,9,10 none 0000000000



Table 6 The Ten States Selected from one-hundred Fifty-seven
Poscible States Yielded by Boolean Operation (via BUGLIB
program)

States Attribute Pattern Directed Direct Relation
Among Attributes

1111111111222
1234567890123456789012

1 No. 1 ll1llllllllll11lll1 None

2 No. 4 1l1111111111011l None

3 No. 11 111111111111110011l A18 -> A19

4 No. 12 111011111111l0011 A18 -> A19

5 No. 14 1111011110l111111100111 A1 8 -> A19

6 No. 30 1111011100111111100111 A9 -> A1 0 , A18 -> A19

7 No. 32 11000110011111100110 A3 ->A 4 -> A 5 , A9 -> A10

8 No. 102 1000011111111111111111 A-z- A' - > A4 -> ;"5

9 No. 138 1000011111111011110111 A2 ->A 3 - > A4 - > A5

10 No. 156 1000010000001110000100 A2 - > A3 - > A4 ->A 5
A7 -> A8 - > A9 - A10
All -> A12 ->A 13
A16 -> A 17 ->A 18 -> A19

A2 1 - > A2 2



A systematic analysis of task

skill I

I c o n t e n t

identifying prime components, abstracting attributes
and naming them Al . .. . . .., Ak.

A2  A 2A 3

(A 1  A3

A1A2  AjA2 A3

Fu 1

Figure I Examples of Attributes



Al

A2

i A3  A4

Figure 2 An Example of Partially ordered Attributes
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Figure 3 The Rule Space Configuration.

The Numbers in Nine ellipses indicate error States (e.g., No. 5 State is
"one cannot do the operation of borrowing in fraction subtraction problems.")
and x marks represent students' points (0,0).
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